Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative
نویسندگان
چکیده
Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a b-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio]]-β-cyclodextrin was prepared by self-assembled method on one of the SAW oscillators. After templates' removal, a sensitive and selective molecular imprinting (MIP) monolayer for GB was prepared. Electrochemical impedance spectroscopy and atomic force microscope (AFM) were used to characterize this film. Comparing the detection results to GB by MIP film and non-MIP film, the molecularly imprinting effect was also proved. The resulting SAW sensor could detect sarin as low as 0.10 mg/m3 at room temperature and the frequency shift was about 300 Hz. The response frequency increased linearly with increasing sarin concentration in the range of 0.7 mg/m3~3.0 mg/m3. When sarin was detected under different temperatures, the SAW sensor exhibited outstanding sensitivity and reliability.
منابع مشابه
Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of b-Cyclodextrin Derivative
Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluori...
متن کاملEngineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly
The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...
متن کاملA SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation ...
متن کاملElectrochemistry of Redox‐Active Guest Molecules at β‐Cyclodextrin‐Functionalized Silicon Electrodes
Functionalization of silicon-based sensing devices with self-assembled receptor monolayers offers flexibility and specificity towards the requested analyte as well as the possibility of sensor reuse. As electrical sensor performance is determined by electron transfer, we functionalized H-terminated silicon substrates with β-cyclodextrin (β-CD) molecules to investigate the electronic coupling be...
متن کاملRedox-responsive self-assembly of β-cyclodextrin and ferrocene double-headed amphiphilic molecules.
We present a redox-responsive self-assembly based on a unimolecular platform. Three double-headed amphiphilic molecules composed of β-cyclodextrin (β-CD) and ferrocene (Fc) each with an alkyl chain as a linker (βCD-Cm-Fc, m = 2, 6, and 10) were synthesized, and their self-assembly behaviors were investigated. The molecules self-assembled into polydisperse micelles that transformed into vesicles...
متن کامل